Limits are one of the BIG Ideas in the AP Calculus Curriculum
Working Definition: The value of $f(x)$ as x approaches a certain number when approaching from either direction. The limit doesn' \dagger have to equal $f(x)$ at x.

Example 1

Graph and Analyze
$f(x)=\frac{3 x^{2}-8 x-3}{x^{2}-9}$

Factor and Simplify

Hole(s)

Domain

Range
Vertical Asymptote(s)

Horizontal Asymptote

Analyze the
Behavior of the graph at $x=-3$
and $x=3$ also discuss
and left and right
hand limits

Galculus 1.1 Understanding Limits Numerically and Graphically

Galculus 1.1 Understanding Limits Numerically and Graphically
CASE 1: \qquad
Limits can fail to exist in one of three ways

CASE 2:

Justify why the limit does not exist at $x=0$ for $f(x)=\sin \left(\frac{1}{x}\right)$

CASE 3: \qquad

Justify why the limit does not exist at $x=2$ for $f(x)=\frac{1}{(x-2)^{2}}$

\boldsymbol{x}	2.9	2.99	2.999	3	3.001	3.01	3.1
$\boldsymbol{f}(\boldsymbol{x})$							

Based on your analysis, what are the values of each of the limits below?

$\lim _{x \rightarrow 3^{-}} f(x)=$	$\lim _{x \rightarrow 3^{+}} f(x)=$	$\lim _{x \rightarrow 3} f(x)=$

Galculus 1.1 Understanding Limits Numerically and Graphically

Example 4:
Sketch a Graph to satisfy each
set of conditions

1. $f(a)$ is undefined
2. $x=a$ is a point discontinuity
3. $\lim _{x \rightarrow a} f(x)$ exists
4. $\lim _{x \rightarrow a} f(x)$ DNE
5. $x=a$ is a jump discontinuity
6. $f(a)$ is defined

