Understanding Limits Numerically and Graphically

Use the given function to find the indicated limits, or state that the limit does not exist. Verify your answers graphically.

1. $f(x)= \begin{cases}(x+2)^{2} & \text { when } x<0 \\ -\sqrt{x}+4 & \text { when } x \geq 0\end{cases}$
a. $\lim _{x \rightarrow 0^{-}} f(x)$
b. $\lim _{x \rightarrow 0^{+}} f(x)$
c. $\lim _{x \rightarrow 0} f(x)$

2. $f(x)=\left\{\begin{array}{cc}x^{2}-4 & x \leq 2 \\ x-3 & x>2\end{array}\right.$
a. $\lim _{x \rightarrow 2^{-}} f(x)$
b. $\lim _{x \rightarrow 2^{+}} f(x)$
c. $\lim _{x \rightarrow 2} f(x)$

\qquad
Understanding Limits Numerically and Graphically
3. $f(x)=\left\{\begin{array}{cc}-x & x<1 \\ 1 & x=1 \\ x^{2}+1 & x>1\end{array}\right.$
a. $\lim _{x \rightarrow 1^{-}} f(x)$
b. $\lim _{x \rightarrow 1^{+}} f(x)$
c. $\lim _{x \rightarrow 1} f(x)$

Continued on Mext Rage...

There are no great limits to growth because there are no limits of human intelligence, imagination, and wonder.

Answer the following questions. You may use a graphing calculator to assist you.

1	For the function $f(x)=5 x^{2}$, as the x-value gets closer and closer to $3, f(x)$ gets closer and closer to what value?
2	For the function $f(x)=\frac{x^{2}-4}{x-2}$, as the x-value gets closer and closer to 2, $f(x)$ gets closer and closer to what value?
3	For the function $f(x)=e^{x}+1$, as the x-value gets closer and closer to $0, f(x)$ gets closer and closer to what value?
	The graph of $f(x)$ is given below, use the graph to answer the following questions. 4) a) $\lim _{x \rightarrow 4^{-}} f(x)$ b) $\lim _{x \rightarrow 4^{+}} f(x)$ c) $\lim _{x \rightarrow 4} f(x)$ d) $f(4)$ 5) a) $\lim _{x \rightarrow 1^{-}} f(x)$ b) $\lim _{x \rightarrow 1^{+}} f(x)$ c) $\lim _{x \rightarrow 1} f(x)$ d) $f(1)$
7	Simplify $\frac{x^{2}+7 x+12}{x^{2}-16}$

