1.3	Intermediate Value				Name						
	I neorem Practice				Date			Period			
Problen	ns 1 – 13	, Use th	e Intern	nediate	Value Tł	neorem	to comp	lete.			
1. In th	ie functio e below t	f(x) = f(x)	$= x^3 - x$ n approxi	— 1, it c imation f	an be sh for a solu	own that tion of t	f(1) = he interv	—1 and ral [1, 2].	f(2) = 5	5. Compl	lete the
x	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
f(x)											
											II
2 Eine	d the seals			d h th o	Intormor	liata Val	Theory	f ($() - w^2$	- 1 aa - 1	12 am
2. Find [0, 4	d the valu 4] such t	ue of <i>c</i> gu hat <i>f</i> (<i>c</i>)	= 8	d by the	Intermed	liate Vali	ue Theor	rem. $f(x)$	$(x) = x^2$	+ 4x - 1	13 on
3 Sho	w that a	(x) = 2x	$x^{3} - 5x^{2}$	-10x +	5 has a	root som	ewhere	in the int	terval [_	1 2]	
5. 5110	w that g	(x) - 2x	, J.	102 1	5 1105 0	000 3011		in the in		1, 2].	
4. Between which of the following two values does the equation $3x^3 + 5x - 11 = 0$ have a solution?											
	(A) [-2, -	-1]	(B)	[0,1]		[C) [-1	,0]	(D)	[1, 2]	

- **5.** Given the function $f(x) = \frac{2x-3}{2x-5}$, determine which interval(s) satisfies the conditions for the Intermediate Value Theorem, such that f(x) = 0.
 - (A) One solution between x = 0 and x = 1
- **(B)** One solution between x = 1 and x = 2
- (C) One solution between x = 1 and x = 2 and one solution between x = 2 and x = 3
- **(D)** One solution between x = 2 and x = 3

6. Apply the Intermediate Value Theorem, if possible, on [1, 2] so that f(c) = 9 for the function $f(x) = x^3 + x$.

7. A delivery van travels along a straight road. During the time interval $0 \le t \le 30$ seconds, the van's velocity in feet per second is a continuous function. Use the table below to find the minimum number of times that the van must have been stopped. Justify your answer.

<i>t</i> (sec)	0	5	7	12	18	22	30
V(t) (ft/sec)	-28	-60	-15	8	24	-4	10

8. Explain why the Intermediate Value Theorem does not apply for guaranteeing that a zero exists for the function $f(x) = x^2 + 2x + 5$ over [0, 6].

9. The functions *f* and *g* are continuous. The function *h* is given by h(x) = f(g(x)) - x. The table below gives values of the functions. Explain why there must be a value *c* for 1 < c < 5 such that h(c) = -2.

x	1	2	3	4	5
f(x)	0	9	7	-3	8
$\boldsymbol{g}(\boldsymbol{x})$	4	6	-4	1	3

10. Given $f(x) = \frac{x}{x-3}$ on the interval [-2, 2]. Determine if the IVT applies. State why or why not. Then, find the value of *c* such that $f(c) = \frac{1}{3}$.

11. Show that there is a value *c* with 0 < c < 2 such that $x^2 + \cos \pi x = 4$. Then, use a graphing utility to find the approximate value of *c*.

13. Does the IVT apply to the function $f(x) = -\left(\frac{1}{2}\right)^{3-x} - 3$ on the interval [2,5] for f(c) = -4?

14. Let *f* be a continuous function on the closed interval [-2, 7]. If f(-2) = -3 and f(7) = 4, then the Intermediate Value Theorem guarantees that

(A) f(0) < 0

(C) f(c) = 1 for at least one c between -2 and 7

- **(B)** $-3 \le f(x) \le 4$ for all x between -2 and 7.
- **(D)** f(c) = 0 for at least one *c* between -3 and 4