\qquad

1. Use the graph of the function $y=g(x)$ shown below, to evaluate each of the following.

2. Use the graph of the function $y=f(x)$ shown below, to evaluate each of the following.
A. On the interval $x \in(-\infty, \infty)$, list the largest intervals for which $f(x)$ is continuous.
B. Find the smallest value k, such that the function is continuous on (k, ∞)
C. Find the smallest value k, such that the function
 is continuous on $[k, \infty)$
D. Find the largest value of b such that $y=f(x)$ is continuous on $(-3, b]$ but not continuous in $(-3, b+1]$. State all values of b that would work.

Problem 3-6, determine the points, classify the type for each as removable, non-removable, jump, or infinite.
3. $f(x)=\frac{1}{(x-3)^{2}}$
4. $g(x)=\frac{x-4}{x^{2}-9 x+20}$
5. $h(x)=\frac{|x+2|}{x+2}$
6. $f(x)=\left\{\begin{array}{cc}x+1 & x<2 \\ -1 & x=2 \\ x^{2}+1 & x>2\end{array}\right.$

Problems 7 - 8, use the three-part definition of continuity to determine if the given functions are continuous at the indicated values of x.
7. $f(x)=\left\{\begin{array}{cl}e^{x} \cos x, & x \geq \pi \\ e^{x} \tan \left(\frac{3 x}{4}\right), & x<\pi\end{array}\right.$ at $x=\pi$
8. $g(x)=\left\{\begin{array}{cc}\frac{x^{2}-9}{x+3} & x \neq-3 \\ 5 & x=-3\end{array} \quad\right.$ at $x=-3$

Problems 9-12, find all value(s) of a, b, c or k that make the function continuous everywhere.
9. $f(x)=\left\{\begin{array}{cc}k x^{2} & x \leq 3 \\ 4 x-11 & x>3\end{array}\right.$
10. $g(x)= \begin{cases}c x^{2} & x<1 \\ 4 & x=1 \\ -x^{3}+k x & x>1\end{cases}$
11. $h(x)=\left\{\begin{array}{cc}\pi & x<0 \\ x^{2}+a x+b & 0 \leq x \leq 1 \\ 6 x+5 & x>1\end{array}\right.$
12. $f(x)=\left\{\begin{array}{cc}x^{2} & x<1 \\ \sin (b x) & x \geq 1\end{array}\right.$
13. Consider the function $y=f(x)$ to answer the following. $f(x)=\left\{\begin{array}{cc}-3 & x \leq-1 \\ m x+k & -1<x<4 \\ 3 & x \geq 4\end{array}\right.$
A. What two limits must be equal in order for the function to be continuous at $x=-1$?
B. What two limits must be equal in order for the function to be continuous at $x=4$?
C. Find the values of m and k so that the function is continuous everywhere.
14. If $y=f(x)$ is continuous for all $x \neq \frac{1}{2}$, evaluate the following. $f(x)=\left\{\begin{array}{r}\frac{x^{2}-x-6}{2 x^{2}+3 x-2}, x \neq-2 \\ k, \quad x=-2\end{array}\right.$
A. $\lim _{x \rightarrow \frac{1}{2}^{+}} f(x)=$
B. $\lim _{x \rightarrow 1} f(x)=$
C. What is the value of k ?

