Galculus 1.3 Day 1: Gontinuity
Homework:

Definition of Continuity

Example 1

Classifying Discontinuities

(a) $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=f(c)$

(b) $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x) \neq f(c)$

(c) $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)$ $f(c)$ is not defined.

(d) $\lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x)$ $f(c)$ is defined.

(e) $\lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x)$ $f(c)$ is not defined.

Definition of Continuity

Definition of Continuity

Removable or Point (Holes) 2-sided limit exists	Non-Removable	
	Jump 1 -sided limits exists	Infinite At least one of the 1 -sided limits doesn't exist

EX \#2: Find the points (intervals) at which the function is continuous, and the points at which

 the function is discontinuous on the interval $-5<x<10$.

One-Sided Continuity

Example 3
A function $f(x)$ is called
More Facts and
Left-continuous at $x=c$ if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$

- Right-continuous at $x=c$ if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$

Continuity at a Point

Suppose $f(x)$ is defined on an open interval containing $x=c$. Then f is continuous at $x=c$ if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Continuity on an Open Interval

A function is continuous on an open interval (a, b) if it is continuous at each point in the interval.

Continuity on a Closed Interval

A function is continuous on a closed interval [a, b] if it is continuous on the open interval (a, b) and the function is continuous from the right at a and continuous from the left at b.

Continuity Laws of Some Basic Functions

- Polynomial functions $P(x)$ are continuous over reals
- Rational Functions $P(x) / Q(x)$ is continuous on its domain such that $Q(c) \neq 0$.
- $y=x^{1 / n}$ is continuous on all reals if n is odd and continuous on $[0, \infty)$ if n is even.
- $y=\sin x$ and $y=\cos x$
- $y=b^{x}$ is continuous for $b>0, b \neq 1$
- $y=\log _{b} x$ is continuous for $x>0, b>0, b \neq 1$

Inverse functions - if $f(x)$ is continuous on an interval with range R and $f^{-1}(x)$ exists, then $f^{-1}(x)$ is continuous on domain R.

More...	Properties of Continuity Given functions f and g continuous at $x=c$, then the following functions are also continuous at $x=c$. 1. Scalar multiple: $b \cdot f$ 2. Sum or difference: $f \pm g$ 3. Product: $f \cdot g$ 4. Quotient: $\frac{f}{g}$; if $g(c) \neq 0$ 5. Compositions: If g is continuous at c and f is continuous at $g(c)$, then the composite function is continuous at $c,(f \circ g)(x)=f(g(x))$
Example 3	For $c=-3, c=3$, and $c=7$, find $f(c), \lim _{x \rightarrow c^{-}} f(x), \lim _{x \rightarrow c^{+}} f(x)$, and $\lim _{x \rightarrow c} f(x)$. Justify your findings using the three-part definition of continuity.
Example 4	A. $f(x)=\frac{1}{x-3}$ B. $g(x)=\frac{2 x^{\iota}+7 x+6}{x+2}$

Example 5 Use the definition of continuity to find the value of k so that the function is continuous for all real numbers.	A. $g(x)=\left\{\begin{array}{cc}k x^{2}, & x \leq 2 \\ k x-6, & x>2\end{array}\right.$ B. $\quad h(x)= \begin{cases}\frac{\|x-4\|}{x-4}, & x<4 \\ 5 k-4 x, & x \geq 4\end{cases}$
Example 6 Finding discontinuity for a piecewise function	Given $h(x)=\left\{\begin{array}{c}-2 x-5 ; \quad x<-2 \\ 3 \quad ; \quad x=-2 \\ x^{3}-6 x+3 ; \quad x>-2\end{array}\right.$ for what values of x is $h(x)$ not continuous? Justify.

Example 7

Use a system of equations to find a and b so that $f(x)$ is continuous

Use the three-part definition of continuity to create a system of equations. Then, find the values of a and b so that $f(x)$ is continuous for all real numbers.
$f(x)=\left\{\begin{array}{cc}2 a x-b ; & x<-1 \\ 6 ; & x=-1 \\ a x^{2}+b ; & x>-1\end{array}\right.$

Galculus 1.3 Day 1: Gontinuity

| Example 8 | | | |
| :--- | :--- | :--- | :--- | :--- |
| Given | | | |
| $g(x)=\left\{\begin{array}{l}2 x+1, x<3 \\ x^{2}, x \geq 3\end{array}\right.$ | A. $\lim _{x \rightarrow 3^{-}} g(x)$ | B. $\lim _{x \rightarrow 3^{+}} g(x)$ | C. $g(3)$ |
| find each \rightarrow | | | F. Is $g(x)$ continuous at $x=3$? Justify. |
| D. $\lim _{x \rightarrow 3} g(x)$ | | | |

