Use the fact that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ to find the following limits.

1. $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{\tan x}{x}$
3. $\lim _{x \rightarrow 0} \frac{\sin (6 x)}{\sin (2 x)}$
4. $\lim _{x \rightarrow 0} \frac{x \csc x+1}{x \csc x}$

Find each limit or state that the limit does not exist.

1. $\lim _{x \rightarrow 1} \frac{x}{\ln x}$
2. $\lim _{x \rightarrow 3} f(x)$ given $f(x)=\left\{\begin{array}{cc}\ln x & 1 \leq x<3 \\ x \ln x & x \geq 3\end{array}\right.$
3. $\lim _{x \rightarrow 0} \frac{e^{x}}{\cos x}$
4. $\lim _{x \rightarrow e}(x \ln x-x)$
5. $\lim _{x \rightarrow 0} e^{\sin x}$
6. $\lim _{x \rightarrow 0} \ln \left(e^{x+1}\right)$
7. Which of the following functions are continuous at $x=1$?
a) $f(x)=\ln x$
b) $f(x)=e^{\frac{1}{x-1}}$
c) $f(x)=\ln (x-1)$
8. Which of the following functions are continuous for all real numbers?
a) $f(x)=x^{\frac{1}{x}}$
b) $f(x)=\tan x$
c) $f(x)=e^{x}$
9. For the following piecewise function, find any values of x for which $f(x)$ is not continuous.

$$
\left\{\begin{array}{cc}
\sin x & x<0 \\
x & 0 \leq x \leq 1
\end{array}\right.
$$

