Calculus 1.5 Infinite Limits and Limits at Infinity - Day 1

$$
\lim _{x \rightarrow 4^{-}} f(x)=
$$

$$
\lim _{x \rightarrow 4^{+}} f(x)=
$$

$$
\lim _{x \rightarrow 1^{+}} g(x)=
$$

[^0]
Example 2

$$
g(x)=\frac{x^{2}-2 x+5}{2 x-2}
$$

$$
\lim _{x \rightarrow \infty} f(x)=
$$

$\lim _{x \rightarrow-\infty} g(x)=$
$\lim _{x \rightarrow \infty} g(x)=$

A Limit at Infinity is:

Pre-Galculus	1. When a factor cancelled from the denominator a \qquad occurred. 2. When a factor would not cancel from the denominator a \qquad occurred.
Example 3 Find the one-sided Limits Analytically	A. $\lim _{x \rightarrow 4^{-}} \frac{-2 x^{2}-2 x+12}{x^{2}-6 x+8}$ B. $\lim _{x \rightarrow 4^{+}} \frac{-2 x^{2}-2 x+12}{x^{2}-6 x+8}$
	C. $\lim _{x \rightarrow 1^{-}} \frac{x^{2}-2 x+5}{2 x-2}$ D. $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-2 x+5}{2 x-2}$
Definition and Justification of Vertical Asymptotes	Case \#1: $h(c)=\frac{\text { non }- \text { zero }}{\text { zero }}$ $x=c$ is: Case \#2: $h(c)=\frac{\text { zero }}{\text { zero }}$

In Galculus, you must use new language in order to justify!
Limit Definition
(Justification) of a vertical Asymptote

Galculus 1.5 Infinite Limits and
Limits at Infinity - Day 1

Example 4	$h(x)=\frac{2 x^{2}+9 x-5}{x^{2}+3 x-10}$	
Find the Vertical Asymptote(s). Justify using limits		
Example 5	A. $\lim _{x \rightarrow \infty}\left(x^{2}-4\right)\left(x^{2}+3\right)$	B. $\lim _{x \rightarrow-\infty}\left(5 x^{3}-2 x+4\right)$
Limits at Infinity using Prior knowledge, find each limit at infinity		
	C. $\lim _{x \rightarrow \infty} \frac{3 x^{2}-4}{x^{2}+1}$	D. $\lim _{x \rightarrow-\infty} \frac{5 x-2}{x^{2}+1}$
Limits at Infinity There are only four possible outcomes when you explore end behavior	A. The curve can increase without bound. $\lim _{x \rightarrow \infty} f(x)=$	B. The curve can decrease without bound. $\lim _{x \rightarrow-\infty} f(x)=$
	C. The curve can become asymptotic to the x-axis. $\lim _{x \rightarrow \infty} f(x)=$	D. The curve can become asymptotic to a specific y-value. $\lim _{x \rightarrow-\infty} f(x)=$

Galculus 1.5 Infinite Limits and
Limits at Infinity - Day 1

Pre-Galculus to
Galculus

1. If degree of numerator is less than degree of denominator (bottom heavy), then limit is zero.

$$
\lim _{x \rightarrow \pm \infty} f(x)=0
$$

2. If degree of numerator equals degree of denominator (powers equal), then limit is the ratio of coefficients of the highest degree.

$$
\lim _{x \rightarrow \pm \infty} f(x)=\frac{\text { coefficient of numerator's highest power }}{\text { coefficient of denominator's highest power }}
$$

3. If degree of numerator is greater than degree of denominator (top heavy*), then limit does not exist.

$$
\lim _{x \rightarrow \pm \infty} f(x)= \pm \infty
$$

Divide every term in the
rational expression by the
highest power of x that appears in the denominator.
Then, apply the Properties
of Limits to evaluate each "piece" to find the limit at infinity, end behavior.

Example 6

A. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-10 x}{x^{2}-8 x+15}$
B. $\lim _{x \rightarrow \infty} \frac{x+3}{x^{2}+4 x+5}$

C. $\lim _{x \rightarrow \infty} \frac{x^{2}-4 x-3}{x-2}$

Galculus 1.5 Infinite Limits and
Limits at Infinity - Day 1

Summarize your findings from example 6	Functions with Horizontal Asymptotes $\begin{aligned} & \lim _{x \rightarrow \infty} f(x)= \\ & \lim _{x \rightarrow-\infty} f(x)= \end{aligned}$	Functions with Slant Asymptotes $\begin{aligned} & \lim _{x \rightarrow \infty} f(x)= \\ & \lim _{x \rightarrow-\infty} f(x)= \end{aligned}$
Limit Definition (Justification) of a Horizontal Asymptote	In Galculus, you must use new language to justify!	
Example 8 Challenge!	CHALLENGE! Use algebraic techniques to find the limits for $g(x)=\frac{3 x-3}{\sqrt{x^{2}+4}}$, whose graph is shown.	
		$\lim _{x \rightarrow-\infty} \frac{3 x-3}{\sqrt{x^{2}+4}}=$ $\lim _{x \rightarrow \infty} \frac{3 x-3}{\sqrt{x^{2}+4}}=$

NOTES

[^0]: An Infinite Limit is:

