Homework:

Example 1

$$f(x) = \frac{-2x^2 - 2x + 12}{x^2 - 6x + 8}$$

$$\lim_{x\to 4^-}f(x)=\mid$$

$$\lim_{x\to 1^-}g(x)=$$

$$\lim_{x \to 4^+} f(x) =$$

$$\lim_{x\to 1^+} g(x) =$$

Your Discovery:

An Infinite Limit is:

Example 2

$$g(x) = \frac{x^2 - 2x + 5}{2x - 2}$$

$$\lim_{x \to -\infty} f(x) =$$

$$\lim_{x \to -\infty} g(x) =$$

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x\to\infty}g(x)=$$

Your Discovery:

A Limit at Infinity is:

Pre-Galculus	When a factor cancelled from the denominator a occurred. When a factor would not cancel from the denominator a occurred.	
Example 3 Find the one-sided Limits Analytically	A. $\lim_{x \to 4^{-}} \frac{-2x^2 - 2x + 12}{x^2 - 6x + 8}$	B. $\lim_{x \to 4^+} \frac{-2x^2 - 2x + 12}{x^2 - 6x + 8}$
	C. $\lim_{x \to 1^{-}} \frac{x^2 - 2x + 5}{2x - 2}$	$\mathbf{D.} \lim_{x \to 1^+} \frac{x^2 - 2x + 5}{2x - 2}$
Definition and Justification of Vertical Asymptotes	Case #1: $h(c) = \frac{non - zero}{zero}$ $x = c \text{ is:}$	Case #2: $h(c) = \frac{zero}{zero}$ $x = c \text{ is:}$
Limit Definition (Justification) of a vertical Asymptote	In Galculus, you must use new language in order to justify!	

Example 4

Find the Vertical Asymptote(s). Justify using limits

$$h(x) = \frac{2x^2 + 9x - 5}{x^2 + 3x - 10}$$

Example 5

Limits at Infinity

using Prior knowledge, find each limit at infinity

A.
$$\lim_{x \to \infty} (x^2 - 4)(x^2 + 3)$$

C.
$$\lim \frac{3x^2 - 4}{x^2 + 1}$$

B.
$$\lim_{x \to -\infty} (5x^3 - 2x + 4)$$

D.
$$\lim_{x \to -\infty} \frac{5x - 2}{x^2 + 1}$$

Limits at Infinity

There are only four possible outcomes when you explore end behavior

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x\to\infty}f(x) =$$

$$\lim_{x \to -\infty} f(x) =$$

D. The curve can become asymptotic to a specific *y*-value.

$$\lim_{x \to -\infty} f(x) =$$

Pre-Calculus to Calculus

1. If degree of numerator is less than degree of denominator (bottom heavy), then limit is zero.

$$\lim_{x\to+\infty}f(x)=0$$

2. If degree of numerator equals degree of denominator (powers equal), then limit is the ratio of coefficients of the highest degree.

$$\lim_{x \to \pm \infty} f(x) = \frac{\text{coefficient of numerator's highest power}}{\text{coefficient of denominator's highest power}}$$

3. If degree of numerator is greater than degree of denominator (top heavy *), then limit does not exist.

$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$

Example 6

Divide every term in the rational expression by the highest power of x that appears in the denominator.

Then, apply the Properties of Limits to evaluate each "piece" to find the limit at infinity, end behavior.

B.
$$\lim_{x \to \infty} \frac{x+3}{x^2+4x+5}$$

C.
$$\lim_{x \to \infty} \frac{x^2 - 4x - 3}{x - 2}$$

Summarize your findings from example 6

Functions with Horizontal Asymptotes

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x \to -\infty} f(x) =$$

Functions with Slant Asymptotes

$$\lim_{x\to\infty}f(x)=$$

$$\lim_{x \to -\infty} f(x) =$$

Limit Definition (Justification) of a Horizontal Asymptote In Galculus, you must use new language to justify!

Example 8

Challenge!

CHALLENGE! Use algebraic techniques to find the limits for $g(x) = \frac{3x-3}{\sqrt{x^2+4}}$, whose graph is shown.

$$\lim_{x \to -\infty} \frac{3x - 3}{\sqrt{x^2 + 4}} =$$

$$\lim_{x\to\infty}\frac{3x-3}{\sqrt{x^2+4}}=$$

NOTES